Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 450: 139199, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38640539

RESUMO

Peppers (Piper nigrum L.) are distinguished by their pungent flavor and aroma. Piperine is a major acid-amide alkaloid with a piperidine ring that gives pepper its flavor and scent. In plant metabolomics research, the accessibility of the chemical standards is critical for scientific credibility. We isolated and identified 10 novel dimers of acid amide alkaloids (9-15 and 20-22), along with 12 known monomers (1-6) and dimers (7, 8, 16-19) from black pepper. Subsequently, we found the distribution of monomers and dimers of acid amide alkaloids in black and white peppers by twenty-two acid amide alkaloids which we obtained using the molecular networking technique and multivariate analysis to reveal the molecular relationships between the acid amide alkaloids in black and white peppers. Our research delved into the chemical diversity of acid amide alkaloids in black and white peppers, which could help inform future culinary and potential medicinal utilization of pepper.

2.
J Agric Food Chem ; 72(3): 1607-1617, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38190504

RESUMO

Piper nigrum is a popular crop that can be used as seasoning or as an additive but its active ingredients also have an effect on the nervous system. Nineteen new amide alkaloids (1a/1b, 2-5, 6a/6b, 7, 8a/8b, 9, 10a/10b, 11a-11b, 12-14) were isolated from P. nigrum, guided by inhibitory activity of AChE and LC-MS/MS based on GNPS. The configurations were determined by extensive spectral analysis, Bulkiness rule, and NMR calculations. The inhibitory activities of AChE/BuChE and Aß aggregation were tested, and the results showed compounds 2, 7, and 12 had significant inhibitory activities. These components were identified in the crude fraction and their relative quantities were tested, which suggested that compound 2 was the index component in the active site from P. nigrum.


Assuntos
Alcaloides , Piper nigrum , Piper , Piper nigrum/química , Extratos Vegetais/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Alcaloides/química , Piper/química
3.
Molecules ; 28(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36770931

RESUMO

The Aedes aegypti mosquito significantly impacts public health, with vector control remaining the most efficient means of reducing the number of arboviral disease cases. This study screened the larvicidal and pupicidal activity of common edible plant extracts. Piper nigrum L. (black pepper) extract production was optimized using accelerated solvent extraction (ASE) and validated following regulatory requirements using HPLC-PDA analytical methodology to quantify its major component-piperine. Larvicidal activity was determined for the standardized P. nigrum fruit ethanol extract (LC50 1.1 µg/mL) and piperine standard (LC50 19.0 µg/mL). Furthermore, 9-day residual activity was determined for the extract (4 µg/mL) and piperine (60 µg/mL), with daily piperine quantification. Semi-field trials of solid extract formulations demonstrated 24-day activity against Ae. aegypti larvae. Thus, the standardized P. nigrum extract emerges as a potential candidate for insecticide development to control the arboviral vector.


Assuntos
Aedes , Inseticidas , Piper nigrum , Animais , Inseticidas/farmacologia , Extratos Vegetais/farmacologia , Mosquitos Vetores , Larva , Folhas de Planta
4.
J Agric Food Chem ; 70(49): 15487-15498, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36450093

RESUMO

The roots of Piper nigrum L., a seasoning for cooking various types of broths, are renowned for their high nutritional content and potential medicinal benefits. In this study, nine pairs of novel cyclohexene-type bisamide alkaloids (1a/1b-9a/9b) were isolated from the pepper roots using molecular network analysis strategies. Their structures were determined by extensive spectroscopic data, electronic circular dichroism (ECD) calculations, and X-ray diffraction analyses. Using an intermolecular Diels-Alder reaction, a strategy for the synthesis of bisamide alkaloids from different monomeric amide alkaloids was developed. Furthermore, these compounds were chirally separated for the first time, and compounds 3a and 5a/5b showed significant anti-neuroinflammation effects in the models of lipopolysaccharide(LPS)-induced BV2 microglial cells. Meanwhile, compounds 6b and 7a displayed concentration-dependent inhibitory activities against acetylcholinesterase with IC50 values of 6.05 ± 1.10 and 3.81 ± 0.10 µM, respectively. These findings confirmed that these bisamide alkaloids could be applied in functional food formulations and pharmaceutical products as well as facilitate the further development and usage of pepper roots.


Assuntos
Alcaloides , Piper nigrum , Piper nigrum/química , Acetilcolinesterase , Estrutura Molecular , Alcaloides/química , Raízes de Plantas/química
5.
EFSA J ; 20(11): e07599, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36381117

RESUMO

Following a request from the European Commission, the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on the safety and efficacy of feed additives prepared from Piper nigrum L.: black pepper oil and black pepper oleoresin for all animal species and a supercritical extract of black pepper for use in dogs and cats. The Panel concludes that black pepper oil is safe in complete feed up to 5 mg/kg for chickens for fattening and other growing poultry, 8 mg/kg for laying hens and other laying/breeding birds kept for egg production/reproduction, 7 mg/kg for turkeys for fattening, 9.5 mg/kg for piglets and other growing Suidae, 11.5 mg/kg for pigs for fattening, 14 mg/kg for sows and dairy cows (and other dairy ruminants), 8.5 mg/kg in rabbits and 20 mg/kg in veal calves, cattle for fattening (and other growing ruminants), sheep, goats, horses, salmonids (and other fin fish), dogs, cats and ornamental fish. For all the other species, the additive is considered safe at 5 mg/kg complete feed. The supercritical extract of black pepper is safe up to the maximum proposed use levels in complete feed of 1.5 mg/kg for cats and dogs. The black pepper oleoresin is safe in complete feed up to 12.5 mg/kg for veal calves, 11.5 for cattle for fattening and other growing ruminants, sheep/goats and horses, 14 mg/kg for dogs 13.5 for mg/kg for salmonids and other fin fish and 51.5 for ornamental fish. For the other species, the calculated safe concentrations in complete feed are 1 mg/kg for chickens for fattening and other growing poultry, 1.4 mg/kg for laying hens and other laying/breeding birds kept for egg production/reproduction, 1.3 for turkeys for fattening, 1.7 mg/kg for piglets and other growing Suidae, 2 mg/kg for pigs for fattening, 2.5 mg/kg for sows, 2.4 mg/kg for dairy cows and other dairy ruminants, 1.5 mg/kg for rabbits, 3.8 mg/kg for cats. For all the other species, the additive is considered safe at 1 mg/kg complete feed. No concerns for consumers and environment were identified following the use of the additives at the use levels considered safe for the target animals. The additives are irritant to skin and eyes, and act as dermal and respiratory sensitisers. The additives are recognised to flavour food and since their function in feed would be essentially the same, no further demonstration of efficacy is necessary.

6.
Foods ; 11(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36230067

RESUMO

Piperine, an important natural product, has a good anti-inflammatory effect. However, few researchers have studied its mechanism in these pathways. The objective of this research was to evaluate the molecular mechanism underlying the anti-inflammatory responses of piperine in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The purification and characterization of piperine from Piper nigrum L. were determined by HPLC, UPLC-Q-TOF-MS and 1H NMR. Then, the anti-inflammatory activity was evaluated by a reagent test kit, ELISA kits, RT-PCR and Western blot experiments. The results suggested that piperine (90.65 ± 0.46% purity) at a concentration of 10-20 mg/L attenuated the production of NO and ROS, downregulated the protein and mRNA expression levels of TNF-α, IL-1ß and IL-6, and upregulated the protein and mRNA transcription levels of IL-10. Meanwhile, the Western blot results indicated that piperine could inhibit the phosphorylation levels of the ERK, JNK, p38 and p65 proteins. Our findings suggest that piperine is a potential anti-inflammatory substance, whose molecular mechanism may be to regulate the key factors of the NF-κB and MAPK signalling pathways.

7.
Biol Trace Elem Res ; 200(5): 2498-2509, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34268700

RESUMO

Spices in general owned a very important reputation in the herbal plantae Kingdom; they have been used for food flavoring, preservation, aroma, and coloring for more than 2000 years. Moreover, spices are classified as all natural, and for this reason, they attracted a large scale of consumers worldwide; however, since most of spices are consumed in their natural form (without grounded them), it is necessary to monitor their consumed quantities. Hence, the aim of this work was to quantify major and trace elements contained in some Algerian kitchen frequently used spices (Piper nigrum L., Nigella sativa L., and Pimpinella anisum L.). Spice materials were washed well then pass through an instrumental neutron activation analysis (INAA). Results revealed the existence of twenty-six elements among them: K, Ca, Fe, and Na which showed significant concentrations, consecutively, while Ce, Eu, Lu, Sm, and Tb were presented at low concentrations. Furthermore, these spices consumption assessment results were found to be well below the tolerance limits compared with the recommended values (RDA) suggested by the FAO association.


Assuntos
Especiarias , Oligoelementos , Argélia , Humanos , Análise de Ativação de Nêutrons , Medição de Risco , Especiarias/análise , Oligoelementos/análise
8.
Front Pharmacol ; 12: 680754, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248631

RESUMO

Ethnopharmacological Relevance: Pepper essential oils have potential immunomodulatory, anti-tumor, and anti-cancer activities. Pepper exhibits the potential to prevent or attenuate carcinogenesis as therapeutic tools. However, the related mechanism remains unelucidated. Aim of the Study: The present study aims to provide reasonable information for the explanation of the dissimilarity of the essential oils from white (WPEO) and black pepper (BPEO). Materials and Methods: WPEO, BPEO, and their single active component, as well as synthetic antioxidants, were compared by the cell model methods and chemical methods, including intracellular antioxidant activity (CAA), total antioxidant activities (TAA), superoxide radical (SR), hydroxyl radical (HR), DPPH radical (DR) scavenging activities and inhibition ability of lipoprotein lipid peroxidation (ILLP). Results: The median effective concentration (EC50) values (mg/mL) of the WPEO and BPEO of SR, HR, DR, and ILLP were 0.437 and 0.327, 0.486 and 0.204, 7.332 and 6.348, 0.688, and 0.624 mg/mL, respectively. The CAA units of WPEO and BPEO were 50.644 and 54.806, respectively. CAA, DR, and TAA of BPEO were significantly higher than those of WPEO (p < 0.05). The BPEO and WPEO can be differentiated as the former have higher correlations with 3-carene, α-pinene, ß-pinene, and limonene while the latter has a higher caryophyllene correlation. The WPEO and BPEO show a good intracellular scavenging ability of reactive oxygen species in HeLa cells. Conclusion: Generally, pepper oil has stronger activities than single components, indicating that pepper is a broad-spectrum natural antioxidant.

9.
Food Sci Biotechnol ; 30(2): 209-215, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33732511

RESUMO

Piperine is a bio-active compound found in pepper, including Piper nigrum L. and P. longum L. It has a strong, pungent flavour and several pharmacologic benefits. However, the risks of piperine have not yet been characterized. In this study, piperine in black pepper and some selected foods was determined to characterise the risk of exposure to piperine. Piperine in black pepper, curry and noodle was analysed by high-performance liquid chromatography-ultraviolet detection, which was validated through the measurement of performance parameters. The mean concentrations of piperine in black pepper, powdered curry, retorted curry, instant noodle and cup noodle were 4,418, 28, 3.4, 4.3 and 4.2 mg/100 g, respectively. The estimated dietary exposure to piperine was 123.66 µg/kg body weight/day, and the margin of exposure calculated by the no-observed-adverse-effect level of piperine, was 162. The piperine from food does not cause an adverse health effect to the public in Korea.

10.
Food Chem ; 346: 128845, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33387832

RESUMO

The essential oil extracted from the black Piper nigrum L. (BPEO) was analyzed for antioxidant, hepatoprotective and antifungal activities. BPEO is rich in total phenolics, total flavonoids and proanthocyanidins, and showed good free radicals and lipid peroxidation scavenging capacities. In a CCl4-induced liver injury mice model, the BPEO treated groups showed increases in the catalase (CAT), glutathione (GSH) and total superoxide dismutase (T-SOD) activities present in the liver and kidney, and reverses the CCl4-elevated total bilirubin (TBIL), glutamate pyruvate transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AKP) and malondialdehyde (MDA) level, which were confirmed in further analyses of kidney tissue sections. BPEO can effectively inhibit the growth of Aspergillus flavus spoilage fungus in maize. Further analyses indicated that BPEO disrupt the permeability barrier of the cell membrane and lead to mitochondrial dysfunction in A. flavus. Therefore, the current study proved BPEO's potential as hepatoprotective products and natural food preservatives.


Assuntos
Antifúngicos/farmacologia , Antioxidantes/farmacologia , Piper nigrum/metabolismo , Alanina Transaminase , Animais , Aspartato Aminotransferases , Tetracloreto de Carbono/toxicidade , Catalase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Flavonoides/farmacologia , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Extratos Vegetais/farmacologia
11.
Foods ; 9(10)2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33050560

RESUMO

Piperine is a bioactive alkaloid compound which provides a unique spicy flavor derived from plants of the Piper nigrum L. Black pepper (n = 160) collected from Vietnam was studied using non-destructive near infrared spectroscopy (NIRS). The spectral acquisition ranged from 1100 to 2500 nm, and a chemometrics analysis program was performed to quantify the piperine contents. High performance liquid chromatography (HPLC) analysis was carried out to develop a chemometric model based on reference values. The black pepper samples were divided into two groups used for calibration (n = 120) and prediction (n = 40) sets. The optimum calibration model was developed by pretreatment of the spectra. The analyses results based on the prediction samples included a coefficient of determination (R2) of 0.914, a root mean square error of prediction (RMSEP) and a standard error of prediction (SEP) of about 0.220 g/100 g, and a ratio performance to deviation (RPD) value of 3.378 regarding the partial least square (PLS) regression model, and an R2 of 0.921, an RMSEP and SEP of 0.210 g/100 g, and an RPD of 3.571, with respect to the principal components (PC) regression model. These results indicate that NIRS can be applicable as a control, or as an alternative rapid and effective method to quantify piperine in P. nigrum L.

12.
Foods ; 9(11)2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114432

RESUMO

The objective of this work is to provide new insights into the mechanisms taking place during the drying of the mature grains of Kampot pepper, a cultivar of pepper (Piper nigrum L.), which is produced in the Kampot Province, Cambodia. Indeed, even if the Kampot pepper is recognized for its organoleptic qualities, no research works were dedicated to the drying of its mature grains, in order to yield red pepper. Experiments with different pretreatment and drying conditions were performed. The results of these experiments were analyzed, regarding the drying kinetics, the color of the dry product, and the degradation of the bioactive compounds during the drying. Regarding these bioactive compounds, several parameters were considered: the total phenolic content, the total flavonoid content, and the piperine content. The results show that the Kampot mature pepper is prone to alterations when dried at a temperature of 55∘C or 65∘C: the color, the total phenolic content, and the flavonoid content are significantly altered, while the piperine content, important for the pungency of this spice, seems unaltered. Raising the temperature leads to more important degradations. However, performing a pretreatment by dipping the pepper grains into boiling water appears to significantly reduce these alterations and, concomitantly, to accelerate the drying. As a conclusion of the analysis of the results, it can be stated that, to increase the product quality, it is recommended to pretreat the pepper by dipping it into boiling water during 5 min., before drying at 55∘C.

13.
Phytomedicine ; 79: 153347, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32992084

RESUMO

BACKGROUND: Amide alkaloidsare typical constituents in plants of the Piperaceae family. Most of the pharmacological properties of Piper nigrum L. are attributed to the major amide alkaloid, piperine. Piperyline (PIPE) is a further amide alkaloid that has been isolated from P. nigrum. HYPOTHESIS/PURPOSE: This study was performed to examine the biological effects of PIPE on pre-osteoblasts and elucidate the underlying mechanisms. STUDY DESIGN: We investigated the effects of PIPE in MC3T3E-1 cells, which are widely used for studying osteoblast behavior in in vitro cell systems. METHODS: We evaluated cell viability based on the MTT assay, apoptosis by TUNEL staining, adhesion and migration by cell adhesion and migration assays, and osteoblast differentiation by alkaline phosphatase activity and staining. Western blot and immunocytochemical analyses were used to investigate cell signaling pathways. RESULTS: We found that at concentrations ranging from 1 to 30 µM, PIPE inhibited cell growth and induced apoptosis in pre-osteoblasts, which was accompanied by the upregulation of apoptotic proteins but downregulation of anti-apoptotic proteins. In contrast, PIPE had no appreciable effect on the autophagy pathway. Nevertheless, PIPE reduced cell adhesion and migration via the inactivation of non-receptor tyrosine kinase (Src)/focal adhesion kinase (FAK) and mitogen-activated protein kinases, and also promoted the downregulation of matrix metalloproteinase 2 and 9 levels. Furthermore, at concentrations of 10 and 30 µM, PIPE suppressed osteoblast differentiation, as indicated by reductions in alkaline phosphatase staining and activity. In addition, PIPE reduced the protein levels of phospho-Smad1/5/8 and runt-related transcription factor 2, and the mRNA levels of osteopontin, alkaline phosphatase, and osteocalcin. CONCLUSION: The findings of this study indicate that PIPE has biological effects associated with cell adhesion, migration, proliferation, and osteoblast differentiation, and suggest a potential role for this alkaloid in the treatment of bone diseases.


Assuntos
Alcaloides/farmacologia , Diferenciação Celular/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Pirrolidinas/farmacologia , Alcaloides/química , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Proliferação de Células/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Metaloproteinases da Matriz/metabolismo , Camundongos , Osteoblastos/citologia , Osteoblastos/fisiologia , Piper nigrum/química , Pirrolidinas/química , Transdução de Sinais
14.
Food Sci Nutr ; 8(4): 1741-1752, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32328240

RESUMO

Recent trends in preservation of processed foods involve the use of natural compounds, rather than chemically synthesized additives, to simultaneously confer antimicrobial properties and prevent fat oxidation. In this regard, black pepper essential oils, due to its diversity in biological activities, have been increasingly popular. The compounds are often used in relatively low amounts and in the form of nanoparticles to permit well blending into foods or uniform dispersion on the surface of fresh meat. The purpose of this study is to determine experimental parameters of a nano-emulsion formation process from black pepper essential oil via the phase inversion temperature (PIT) technique. The study results showed that the system achieved the optimal nano-emulsion under following condition: the ratio by weight of water: Tween-80: oil = 86:9.7:4.3, the stirring speed of nano-emulsions at 500 rpm for 45 min (heating at 75°C for 30 min and then rapidly cooling at 5°C for 15 min).

15.
J Plant Res ; 133(1): 73-94, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31853665

RESUMO

Black pepper (Piper nigrum L.) is one of the most popular and oldest spices in the world with culinary uses and various pharmacological properties. In order to satisfy the growing worldwide demand for black pepper, improved productivity of pepper is highly desirable. A primary constraint in black pepper production is the non-synchronous nature of flower development and non-uniform fruit ripening within a spike. The uneven ripening of pepper berries results in a high labour requirement for selective harvesting contributes to low productivity and affects the quality of the pepper products. In Malaysia, there are a few recommended varieties for black pepper planting, each having some limitations in addition to the useful characteristics. Therefore, a comparative study of different black pepper varieties will provide a better understanding of the mechanisms regulates fruit development and ripening. Plant hormones are known to influence the fruit development process and their roles in black pepper flower and fruit development were inferred based on the probe-based gene expression analysis and the quantification of the multiple plant hormones using high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). In this study, jasmonic acid and salicylic acid were found to play roles in flowering and fruit setting, whereas auxin, gibberellin and cytokinins are important for fruit growth. Abscisic acid has positive role in fruit maturation and ripening in the development process. Distinct pattern of plant hormones related gene expression profiles with the hormones accumulation profiles suggested a complex network of regulation is involved in the signaling process and crosstalk between plant hormones was another layer of regulation in the black pepper fruit development mechanisms. The current study provides clues to help in elucidating the timing of the action of each specific plant hormone during fruit development and ripening which could be applied to enhance our ability to control the ripening process, leading to improving procedures for the production and post-harvest handling of pepper fruits.


Assuntos
Piper nigrum , Frutas , Regulação da Expressão Gênica de Plantas , Malásia , Reguladores de Crescimento de Plantas , Espectrometria de Massas em Tandem
16.
J Agric Food Chem ; 68(1): 390-401, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31820962

RESUMO

Infrared spectroscopy is often used as a simple, fast, and green method to screen for economically motivated adulteration in spices. However, conventional microscopy remains the reference method. In this research, the combination of microscopy and Fourier-transform infrared spectroscopy in mapping mode, namely, micro-FTIR imaging, along with Principle Component Analysis were used to develop a non-targeted method for detecting a broad range of organic and mineral bulking agents that could potentially be used to adulterate black pepper. This method, based on the spatial distribution of black pepper chemical composition, has been thoroughly validated as a one-class, non-targeted classification method. Results are categorized as Typical or Atypical, where an Atypical result indicates a high probability of adulteration. For an Atypical outcome, a multitool investigational approach is then used for the detection and identification of the potential adulterant.


Assuntos
Contaminação de Alimentos/análise , Piper nigrum/química , Espectrofotometria Infravermelho/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise de Componente Principal , Sementes/química , Especiarias/análise
17.
Molecules ; 23(8)2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30096911

RESUMO

In the present study, nontargeted metabolomics was used to screen the phenolic and polyhydroxy compounds in pepper products. A total of 186 phenolic and polyhydroxy compounds, including anthocyanins, proanthocyanidins, catechin derivatives, flavanones, flavones, flavonols, isoflavones and 3-O-p-coumaroyl quinic acid O-hexoside, quinic acid (polyhydroxy compounds), etc. For the selected 50 types of phenolic compound, except malvidin 3,5-diglucoside (malvin), l-epicatechin and 4'-hydroxy-5,7-dimethoxyflavanone, other compound contents were present in high contents in freeze-dried pepper berries, and pinocembrin was relatively abundant in two kinds of pepper products. The score plots of principal component analysis indicated that the pepper samples can be classified into four groups on the basis of the type pepper processing. This study provided a comprehensive profile of the phenolic and polyhydroxy compounds of different pepper products and partly clarified the factors responsible for different metabolite profiles in ongoing studies and the changes of phenolic compounds for the browning mechanism of black pepper.


Assuntos
Ácidos Carboxílicos/metabolismo , Metabolômica/métodos , Fenóis/metabolismo , Piper nigrum/metabolismo , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida , Metaboloma , Extratos Vegetais/química , Análise de Componente Principal
18.
Molecules ; 23(2)2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29425156

RESUMO

Black pepper (Piper nigrum L.) is the most widely used spice in the world. Blackening is considered to be beneficial and important in the processing of black pepper because it contributes to its color and flavor. The purpose of this paper is to investigate polyphenol oxidation as well as the chlorophyll and vitamin C (VC) degradation in the blackening of Piper nigrum L. Black pepper was produced by four methods, and changes in polyphenols, chlorophyll and VC were studied by high performance liquid chromatography (HPLC) and ultraviolet-visible and visible (UV-Vis) spectrophotometry. The results show that polyphenol oxidase activity significantly decreased during the preparation of black pepper, and the concentrations of phenolic compounds, VC, and chlorophyll a and b also significantly decreased. Polyphenol oxidation and chlorophyll and VC degradation contribute to the blackening. A crude extract of phenolic compounds from black pepper was prepared by the system solvent method. The greater the polarity of the extraction solvent, the higher the extraction rates of the phenolic compounds and the total phenol content. Pepper phenolic compounds were analyzed by HPLC analysis.


Assuntos
Ácido Ascórbico/metabolismo , Clorofila/metabolismo , Piper nigrum/metabolismo , Polifenóis/metabolismo , Catecol Oxidase/metabolismo , Cor , Oxirredução , Extratos Vegetais/isolamento & purificação , Especiarias
19.
Front Pharmacol ; 8: 408, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28694780

RESUMO

Black peppercorns (Piper nigrum L.) elicit a pungent and tingling oral impression. Their pungency is partially explained by the agonist activity of some of their active principles, especially piperine, on TRP channels. However, we recently showed that piperine, as well as other pungent compounds, also possess a marked effect on two-pore domain (KCNK, K2P) K+ channels. Members of this family play a key role in maintaining the resting membrane potential of excitable cells. Interestingly, tingling compounds have been shown to induce neuronal excitation by inhibiting KCNK channels. We addressed the question of whether it was plausible that KCNK channels could constitute a physiologically relevant target for the sensory active compounds present in black peppercorns. Because previous studies have demonstrated that mouse trigeminal neurons respond to several pungent compounds, to which humans are also sensitive, we used a primary culture of mouse trigeminal neurons to investigate whether the effect of piperine on these cell types could also be mediated by KCNK channels. We observed that even in the presence of classical TRP-antagonists, piperine was still able to activate a fraction of trigeminal neurons. Furthermore, our results showed that piperine is capable of inducing neuronal depolarization by a mechanism that does not require extracellular Na+ or Ca2+. This depolarization was mediated by the inhibition of a background K+ conductance, most likely corresponding to the KCNK channels of the TASK subfamily. We then performed a screening with 12 other pungent and/or tingling chemosensates isolated from black peppercorns. These compounds were evaluated on Xenopus laevis oocytes expressing the human orthologues of KCNK3, KNCK9 and KCNK18, which we previously showed to be inhibited by piperine. Remarkably, almost all of the isolated chemosensates inhibited the basal activity of hKCNK3, with 1-(octadeca-2E,4E,13/12Z-trienoyl)pyrrolidine acting as one of the most potent natural blockers for hKCNK3 found to date. Our results suggest that KCNK channels, especially KCNK3, are likely to play a complementary role to TRP channels in the complex orosensory impression elicited by black peppercorns, while they also help to expand the pharmacological knowledge of KCNK channels.

20.
Curr Microbiol ; 74(6): 739-746, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28378160

RESUMO

White pepper (Piper nigrum L.), a well-known spice, is the main pepper processing product in Hainan province, China. The solid-state method of fermentation can peel pepper in a highly efficient manner and yield high-quality white pepper. In the present study, we used next-generation sequencing to reveal the dynamic changes in the microbiota during pepper peeling by solid-state fermentation. The results suggested that the inoculated Aspergillus niger was dominant throughout the fermentation stage, with its strains constituting more than 95% of the fungi present; thus, the fungal community structure was relatively stable. The bacterial community structure fluctuated across different fermentation periods; among the bacteria present, Pseudomonas, Tatumella, Pantoea, Acinetobacter, Lactococcus, and Enterobacter accounted for more than 95% of all bacteria. Based on the correlations among the microbial community, we found that Pseudomonas and Acinetobacter were significantly positively related with A. niger, which showed strong synergy with them. In view of the microbial functional gene analysis, we found that these three bacteria and fungi were closely related to the production of pectin esterase (COG4677) and acetyl xylan esterase (COG3458), the key enzymes for pepper peeling. The present research clarifies the solid-state fermentation method of pepper peeling and lays a theoretical foundation to promote the development of the pepper peeling process and the production of high-quality white pepper.


Assuntos
Acinetobacter/genética , Aspergillus niger/genética , Fermentação/fisiologia , Microbiota/genética , Piper nigrum/microbiologia , Pseudomonas/genética , Verduras/microbiologia , Acetilesterase/metabolismo , Acinetobacter/classificação , Acinetobacter/isolamento & purificação , Aspergillus niger/classificação , Aspergillus niger/isolamento & purificação , Hidrolases de Éster Carboxílico/metabolismo , China , Manipulação de Alimentos/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Pseudomonas/classificação , Pseudomonas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA